概率論與數(shù)理統(tǒng)計(jì)時(shí)理工科相關(guān)專業(yè)的一門重要基礎(chǔ)課,在科學(xué)的各個(gè)領(lǐng)域都有其廣泛的應(yīng)用,作者通過總結(jié)多年的教學(xué)經(jīng)驗(yàn),并且結(jié)合了國(guó)際班學(xué)生的特點(diǎn),吸取了國(guó)內(nèi)外優(yōu)秀教材和講義資料的特點(diǎn),編寫成了此教材。本教材在內(nèi)容的安排有淺入深,符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律,并配備相應(yīng)的習(xí)題。
本書根據(jù)編者多年的雙語(yǔ)教學(xué)經(jīng)驗(yàn)編寫,介紹了概率論與數(shù)理統(tǒng)計(jì)的基本概念、原理、計(jì)算方法,以及實(shí)際應(yīng)用.在編寫過程中,吸取了國(guó)內(nèi)外優(yōu)秀教材的優(yōu)點(diǎn),注重理論與實(shí)踐相結(jié)合,系統(tǒng)性強(qiáng),圖例豐富,突出統(tǒng)計(jì)思想,著力培養(yǎng)學(xué)生分析問題和解決實(shí)際問題的能力.
本書主要內(nèi)容包括概率與隨機(jī)事件、隨機(jī)變量及其分布、多維隨機(jī)變量及其分布、隨機(jī)變量的數(shù)字特征、大數(shù)定律和中心極限定理、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、線性回歸分析.每章中精選了的實(shí)用性強(qiáng)的例題和習(xí)題.
本書可作為高等院校理工科各專業(yè)本科生的概率論與數(shù)理統(tǒng)計(jì)課程雙語(yǔ)教材,也可供工程技術(shù)人員、科技工作者參考
桂文豪,男,教授,2009年畢業(yè)于美國(guó)佛羅里達(dá)州立大學(xué)獲統(tǒng)計(jì)系博士學(xué)位。畢業(yè)后曾任美國(guó)康奈爾大學(xué)博士后,美國(guó)南衛(wèi)理公會(huì)大學(xué)和明尼蘇達(dá)大學(xué)助理教授。自2014年開始任職于北京交通大學(xué)。中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)可靠性工程分會(huì)理事。長(zhǎng)期從事概率論與數(shù)理統(tǒng)計(jì)的教學(xué)和科研工作。
Chapter1 Introduction to Probability
1.1 Random Experiments
?。保病ample Space
?。保场elations and Operations between Events
?。保础he Definition of Probability
?。保怠qually Likely Outcomes Model
1.6 Conditional Probability
?。保贰otal Probability and Bayes' Theorem
?。保浮ndependent Events
Exercise1
Chapter2 Random Variables and Distributions
2.1 Random Variables
?。玻病umulative Distribution Function
?。玻场iscrete Distributions
?。玻础ome Common Discrete Distributions
2.5 Continuous Distributions
2.6 Some Useful Continuous Distributions
?。玻贰unctions of a Random Variable
Exercise2
Chapter3 Multivariate Probability Distributions
3.1 Bivariate Distributions
?。常病arginal Distributions
3.3 Conditional Distributions
?。常础ndependent Random Variables
3.5 Functions of TwoorMoreRandom Variables
Exercise3
Chapter4 Characteristics of Random Variables
4.1 The Expectation of a Random Variable
?。矗病ariance
4.3 The Characteristics of some Common Distributions
?。矗础hebyshev's Inequality
4.5 Covariance and Correlation Coefficient
?。矗丁oment and CovarianceMatrix
Exercise4
Chapter5 Large Random Samples
5.1 The Law of Large Numbers
?。担病he Central Limit Theorem
Exercise5
Chapter6 Estimation
?。叮薄opulation and Sample
?。叮病oment Estimation
6.3 Maximum Likelihood Estimation
?。叮础roperties of Estimators
?。叮怠hree Important Distributions
6.6 Confidence Intervals
Exercise6
Chapter7 Hypothesis Testing
?。罚薄asics of Hypothesis Testing
?。罚病ypothesis Tests for a Population Mean
?。罚场esting Differences between Means
?。罚础ypothesis Tests for One or Two Variances
?。罚怠oodness of Fit Tests
Exercise7
Chapter8 Linear Regression
?。福薄inear Regression Model
8.2 Least Squares Estimation
8.3 Properties of Linear Regression Estimators
?。福础nferences Concerning the Slope
?。福怠egression Validity
?。福丁onfidence Interval for Mean Response
8.7 Inference for Prediction
Exercise8
Appendix A Binomial Probability Distribution
Appendix B Poisson Cumulative Distribution
Appendix C Standard Normal Table
Appendix D t-distribution Upper Quantiles tα(n)
Appendix E χ2-distribution Upper Quantiles χ2α(n)
Appendix F F-distribution Upper Quantiles Fα(n1,n2)
Appendix G Some Common Probability Distributions
Bibliography